The influence of mechanical strain on the optical properties of spherical gold nanoparticles
نویسندگان
چکیده
We utilize classical Mie scattering theory to investigate the effects of tensile and compressive mechanical strain on both the far field (absorption, scattering and extinction efficiencies) and near field (surface enhanced Raman scattering) optical properties of spherical gold nanoparticles with diameters ranging from 10 to 100nm. By accounting for the strain effects on both the ionic core (bound) and conduction (free) electrons through appropriate modifications of the bulk dielectric functions, we find that gold nanoparticles are relatively sensitive to the effects of mechanical strain due to the fact that the plasmon resonance wavelength for spherical gold particles, which occurs around l1⁄4 520nm, is nearly coincident with the interband transitions of the core electrons. Specifically, we find that tensile strain leads to significant enhancements ranging from 60% to 120% in the far field optical efficiencies, while compressive strain leads to similar decreases, and that the plasmon resonance wavelength can be red or blueshifted up to 100nm due to the applied strain. Finally, we find that tensile strain also strongly enhances the local electric (E)-field at the surface of the nanoparticles, which is of considerable interest for surface-enhanced Raman scattering applications; 5% tensile strain is found to enhance the jEj intensity by 63%. The present results demonstrate the potential of mechanical strain, and specifically that of tensile mechanical strain in enhancing and tailoring the optical properties of gold nanoparticles. & 2009 Elsevier Ltd All rights reserved.
منابع مشابه
Structural and Optical Properties of Gold Nanoparticles Formed by Wet-Chemical Method
Our aim in this work is the synthesis and study optical and structural properties of gold nanoparticles.Gold (III) chloride trihydratewas taken as metal precursor, ascorbic acid at the presence of an appropriate amount of NaOH as reducing agent and polyvinylpyrrolidonek-30 (PVP K-30) as a stabilizing and capping agent. The reaction was performed in high-speed stirring rate at room temperature.S...
متن کاملStructural and Optical Properties of Gold Nanoparticles Formed by Wet-Chemical Method
Our aim in this work is the synthesis and study optical and structural properties of gold nanoparticles.Gold (III) chloride trihydratewas taken as metal precursor, ascorbic acid at the presence of an appropriate amount of NaOH as reducing agent and polyvinylpyrrolidonek-30 (PVP K-30) as a stabilizing and capping agent. The reaction was performed in high-speed stirring rate at room temperature.S...
متن کاملOptical Limiting Properties of Colloids Enhanced by Gold Nanoparticles Based on Nonlinear Refraction for Cw Laser Illumination
In this work, thermo-optical properties of gold nanoparticle colloids are studied using continuous wave (CW) laser irradiation at 532 nm. The nanoparticle colloids are fabricated by 18 ns pulsed laser ablation of pure gold plate in the distilled water. The formation of the nanoparticles has been evidenced by optical absorption spectra and transmission electron microscopy. The nonlinear optical ...
متن کاملInfluence of Different Percentages of Copper on the Size and Optical Properties of Ag-Cu Nanoparticles Formed by Wet-Chemical Method
In this work, Ag-Cu nanoparticles (with different percentages of copper, 10%, 25%, 50%, 75% Cu) were synthesized by wet chemical method. Copper(II) sulfate and silver nitrate were taken as metal precursors, ascorbic acid as reducing agent and anhydride maleic (MA) as a modifier. The prepared nanoparticles were characterized by means of X-ray diffraction (XRD) technique and scanning electron mic...
متن کاملA Study of the Influence of Percentage of Copper on the Structural and Optical Properties of Au-Cu Nanoparticle
Here we present our experimental results in synthesizing Au-Cu nano-particles with tunable localized surface plasmon resonance frequency through wet-chemical at temperature room. The reaction is performed in the presence of ascorbic acid as a reducing agent and polyvinyl pyrrolidone as capping agent via four different procedures: (1) mixture of 90% HAuCl4 and 10% CuSO4.5H2O precursors, (2) mixt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010